Shiming Liang

ROBOTICS ENGINEER

📱 +1 (267) 579-9389 \mid 🖾 smliang@seas.upenn.edu \mid 🖀 fivyex.com/portfolio/ 📋 🖬 linkedin.com/in/smliang/

Education **University of Pennsylvania**

MSE in Robotics

• Current GPA: 3.96/4.00

Huazhong University of Science and Technology

BEng in Mechanical Engineering

• GPA: 3.94/4.00

Skills_

Coding	C++, Python, MATLAB on Linux and Windows (data structures & algorithms, multi processing/threading, network protocols, OpenCV,
Robotics	Eigen3, PyTorch, scikit-learn), revision control with Git, ROS (rviz, Gazebo, Movelt, slam_toolbox, pf, tf), IDE (VSCode)
	rigid body dynamics (quadrotors, automobiles, robotic arms), state estimation (image processing, sensor calibration, Kalman/Particle
	filter, SLAM), controller design (PID, LQR, MPC, policy gradient, DQN), planning (A*, RRT*, Vehicle Routing Problem, Orienteering Problem,
	trajectory generation), deep learning (LSTM, Transformer, CNN), optimization (LP, QP, evolutionary algorithm), sensors (LiDAR, camera,
	IMU, mo-cap), CAD (AutoCAD, Solidworks, Siemens NX), fabrication (3D printing, milling, lathing)
Misc	communication, problem-solving, technical writing (LaTeX), time management, collaboration, initiative, inclusive, Microsoft Office

Work Experience

University of Pennsylvania

Research Assistant at the GRASP Lab

- Lead the development of a decision support system for geological surveys, to find paths that maximize information gain with constrained total cost.
- Prepare for submission: An Efficient Indicator-based Evolutionary Algorithm for Path Planning in Geological Surveys. S Liang, S Manjanna, MA Hsieh.
- Formulate the task as the NP-hard multi-objective orienteering problem (MOOP) to find the set of paths satisfying the total cost constraint such that no alternative path improves any objectives without worsening others.
- Conducted comprehensive research on MOOP literature, focusing on effective algorithmic designs and standard metrics for comparison.
- Propose an evolutionary algorithm that employs multi-objective quality indicators to evaluate path quality and tabu search to reduce repeated efforts.
- Demonstrate that the proposed algorithm yields highly competitive results compared to two state-of-the-art algorithms.

University of Pennsylvania

Teaching Assistant for Advanced Robotics and Mechanical & Mechatronic Systems

- Mentor students on circuit analysis, dynamical systems, rigid body dynamics, path/trajectory planning, and state estimation.
- Create and revise course documents to preserve knowledge, cover common questions, and reduce ambiguity.
- Communicate weekly with teachers and students to provide updates on student progress, address concerns, and coordinate teaching efforts.

Wuhan Yifi Laser Equipment Co., Ltd.

Robotics Engineer Intern

- Develop a scan-plan-weld pipeline for an industrial robot with a welder and a laser profiler to boost the efficiency of handling varying parts.
- Calibrate the poses of the tools in the end-effector frame by solving dedicated least square problems for each tool.
- Generate the end-effector trajectory subject to the geometric constraints of the flat welding position.
- Automate the pipeline and shorten the commissioning time to one-tenth of the original pipeline, which involves manual programming.

Projects

F1TENTH Autonomous Racing

University of Pennsylvania

- Build, program, and drive a 1/10th scale autonomous race car with Hokuyo LiDAR, VESC, and NVIDIA's Jetson onboard.
- Implement geometric path tracking methods such as Pure Pursuit and the Stanley Method to guide the vehicle along a path.
- Generate the minimum time race line with alternating optimization on the path and the speed profile, where the path minimizes a weighted sum of the length and accumulated curvature subject to the track specifications, and the velocity profile maximizes speed subject to the acceleration constraints.
- Implement an RRT*-based local planner to avoid dynamic obstacles while tracking the optimal trajectory for overtaking in head-to-head races.
- Manage the team project codebase with Git using the personal branching workflow.

Quadrotors Visual Inertial Odometry with Unscented Kalman Filter

University of Pennsylvania

- Independently develop a state estimation stack for quadrotors with the unscented Kalman filter fusing observations of an IMU and a stereo camera.
- Calibrate the IMU parameters by fitting the IMU measurements to the motion capture system (Vicon) measurements with linear regression.
- Process the image stream with OpenCV to rectify images, extract & match descriptors, and discard outlier descriptor pairs with the RANSAC algorithm. • Implement the unscented Kalman filter (UKF), incorporating the quadrotor dynamics and the observations from the IMU and stereo camera.
- Demonstrate the superiority of the UKF over the classic error state Kalman filter in terms of estimation error and robustness against noise.

Dynamic Path Replanning for Quadrotors with Limited Sensor Range

University of Pennsylvania

- Design a dynamic path planning scheme where the quadrotor replans its future path as more information about the environment is acquired.
- Implement a geometric nonlinear controller for trajectory tracking by decomposing the system into attitude, position, and motor controllers.
- Implement the A* search to generate a feasible path on the fly when an obstacle is found on the original path.
- Extract sparse waypoints with the Ramer–Douglas–Peucker algorithm and generate the dynamically feasible trajectory minimizing the accumulated snap. • Test the scheme in the simulation where its performance is comparable to the baseline planner with global information.

Philadelphia, PA Estimated May 2024

> Wuhan, Hubei Jun 2022

Philadelphia, PA

May 2023 - Present

Philadelphia, PA

Aug 2023 - Present

Wuhan, China

Jul 2021 - Sep 2021

Philadelphia, PA

Ian 2024 - Present

Philadelphia, PA

Feb 2023 - Jun 2023

Philadelphia, PA

Feb 2023 - Jun 2023