Moveit cpp示例代码:Move Group

概述

提供常用的控制功能,包括设置关节空间目标、设置笛卡尔空间目标、运动规划、移动机械臂、添加及移除基本几何体(碰撞体)、将物体固连在不同坐标系上等。

示例代码

/*********************************************************************
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2013, SRI International
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of SRI International nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *********************************************************************/

/* Author: Sachin Chitta, Dave Coleman, Mike Lautman */

#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/planning_scene_interface/planning_scene_interface.h>

#include <moveit_msgs/DisplayRobotState.h>
#include <moveit_msgs/DisplayTrajectory.h>

#include <moveit_msgs/AttachedCollisionObject.h>
#include <moveit_msgs/CollisionObject.h>

#include <moveit_visual_tools/moveit_visual_tools.h>

int main(int argc, char** argv)
{
  ros::init(argc, argv, "move_group_interface_tutorial");
  ros::NodeHandle node_handle;
  ros::AsyncSpinner spinner(1);
  spinner.start();

  // BEGIN_TUTORIAL
  //
  // Setup
  // ^^^^^
  //
  // MoveIt operates on sets of joints called "planning groups" and stores them in an object called
  // the `JointModelGroup`. Throughout MoveIt the terms "planning group" and "joint model group"
  // are used interchangably.
  static const std::string PLANNING_GROUP = "panda_arm";

  // The :move_group_interface:`MoveGroupInterface` class can be easily
  // setup using just the name of the planning group you would like to control and plan for.
  moveit::planning_interface::MoveGroupInterface move_group(PLANNING_GROUP);

  // We will use the :planning_scene_interface:`PlanningSceneInterface`
  // class to add and remove collision objects in our "virtual world" scene
  moveit::planning_interface::PlanningSceneInterface planning_scene_interface;

  // Raw pointers are frequently used to refer to the planning group for improved performance.
  const robot_state::JointModelGroup* joint_model_group =
      move_group.getCurrentState()->getJointModelGroup(PLANNING_GROUP);

  // Visualization
  // ^^^^^^^^^^^^^
  //
  // The package MoveItVisualTools provides many capabilties for visualizing objects, robots,
  // and trajectories in RViz as well as debugging tools such as step-by-step introspection of a script
  namespace rvt = rviz_visual_tools;
  moveit_visual_tools::MoveItVisualTools visual_tools("panda_link0");
  visual_tools.deleteAllMarkers();

  // Remote control is an introspection tool that allows users to step through a high level script
  // via buttons and keyboard shortcuts in RViz
  visual_tools.loadRemoteControl();

  // RViz provides many types of markers, in this demo we will use text, cylinders, and spheres
  Eigen::Isometry3d text_pose = Eigen::Isometry3d::Identity();
  text_pose.translation().z() = 1.75;
  visual_tools.publishText(text_pose, "MoveGroupInterface Demo", rvt::WHITE, rvt::XLARGE);

  // Batch publishing is used to reduce the number of messages being sent to RViz for large visualizations
  visual_tools.trigger();

  // Getting Basic Information
  // ^^^^^^^^^^^^^^^^^^^^^^^^^
  //
  // We can print the name of the reference frame for this robot.
  ROS_INFO_NAMED("tutorial", "Planning frame: %s", move_group.getPlanningFrame().c_str());

  // We can also print the name of the end-effector link for this group.
  ROS_INFO_NAMED("tutorial", "End effector link: %s", move_group.getEndEffectorLink().c_str());

  // We can get a list of all the groups in the robot:
  ROS_INFO_NAMED("tutorial", "Available Planning Groups:");
  std::copy(move_group.getJointModelGroupNames().begin(), move_group.getJointModelGroupNames().end(),
            std::ostream_iterator<std::string>(std::cout, ", "));

  // Start the demo
  // ^^^^^^^^^^^^^^^^^^^^^^^^^
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to start the demo");

  // .. _move_group_interface-planning-to-pose-goal:
  //
  // Planning to a Pose goal
  // ^^^^^^^^^^^^^^^^^^^^^^^
  // We can plan a motion for this group to a desired pose for the
  // end-effector.
  geometry_msgs::Pose target_pose1;
  target_pose1.orientation.w = 1.0;
  target_pose1.position.x = 0.28;
  target_pose1.position.y = -0.2;
  target_pose1.position.z = 0.5;
  move_group.setPoseTarget(target_pose1);

  // Now, we call the planner to compute the plan and visualize it.
  // Note that we are just planning, not asking move_group
  // to actually move the robot.
  moveit::planning_interface::MoveGroupInterface::Plan my_plan;

  bool success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);

  ROS_INFO_NAMED("tutorial", "Visualizing plan 1 (pose goal) %s", success ? "" : "FAILED");

  // Visualizing plans
  // ^^^^^^^^^^^^^^^^^
  // We can also visualize the plan as a line with markers in RViz.
  ROS_INFO_NAMED("tutorial", "Visualizing plan 1 as trajectory line");
  visual_tools.publishAxisLabeled(target_pose1, "pose1");
  visual_tools.publishText(text_pose, "Pose Goal", rvt::WHITE, rvt::XLARGE);
  visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
  visual_tools.trigger();
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");

  // Moving to a pose goal
  // ^^^^^^^^^^^^^^^^^^^^^
  //
  // Moving to a pose goal is similar to the step above
  // except we now use the move() function. Note that
  // the pose goal we had set earlier is still active
  // and so the robot will try to move to that goal. We will
  // not use that function in this tutorial since it is
  // a blocking function and requires a controller to be active
  // and report success on execution of a trajectory.

  /* Uncomment below line when working with a real robot */
  /* move_group.move(); */

  // Planning to a joint-space goal
  // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  //
  // Let's set a joint space goal and move towards it.  This will replace the
  // pose target we set above.
  //
  // To start, we'll create an pointer that references the current robot's state.
  // RobotState is the object that contains all the current position/velocity/acceleration data.
  moveit::core::RobotStatePtr current_state = move_group.getCurrentState();
  //
  // Next get the current set of joint values for the group.
  std::vector<double> joint_group_positions;
  current_state->copyJointGroupPositions(joint_model_group, joint_group_positions);

  // Now, let's modify one of the joints, plan to the new joint space goal and visualize the plan.
  joint_group_positions[0] = -1.0;  // radians
  move_group.setJointValueTarget(joint_group_positions);

  success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
  ROS_INFO_NAMED("tutorial", "Visualizing plan 2 (joint space goal) %s", success ? "" : "FAILED");

  // Visualize the plan in RViz
  visual_tools.deleteAllMarkers();
  visual_tools.publishText(text_pose, "Joint Space Goal", rvt::WHITE, rvt::XLARGE);
  visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
  visual_tools.trigger();
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");

  // Planning with Path Constraints
  // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  //
  // Path constraints can easily be specified for a link on the robot.
  // Let's specify a path constraint and a pose goal for our group.
  // First define the path constraint.
  moveit_msgs::OrientationConstraint ocm;
  ocm.link_name = "panda_link7";
  ocm.header.frame_id = "panda_link0";
  ocm.orientation.w = 1.0;
  ocm.absolute_x_axis_tolerance = 0.1;
  ocm.absolute_y_axis_tolerance = 0.1;
  ocm.absolute_z_axis_tolerance = 0.1;
  ocm.weight = 1.0;

  // Now, set it as the path constraint for the group.
  moveit_msgs::Constraints test_constraints;
  test_constraints.orientation_constraints.push_back(ocm);
  move_group.setPathConstraints(test_constraints);

  // We will reuse the old goal that we had and plan to it.
  // Note that this will only work if the current state already
  // satisfies the path constraints. So, we need to set the start
  // state to a new pose.
  robot_state::RobotState start_state(*move_group.getCurrentState());
  geometry_msgs::Pose start_pose2;
  start_pose2.orientation.w = 1.0;
  start_pose2.position.x = 0.55;
  start_pose2.position.y = -0.05;
  start_pose2.position.z = 0.8;
  start_state.setFromIK(joint_model_group, start_pose2);
  move_group.setStartState(start_state);

  // Now we will plan to the earlier pose target from the new
  // start state that we have just created.
  move_group.setPoseTarget(target_pose1);

  // Planning with constraints can be slow because every sample must call an inverse kinematics solver.
  // Lets increase the planning time from the default 5 seconds to be sure the planner has enough time to succeed.
  move_group.setPlanningTime(10.0);

  success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
  ROS_INFO_NAMED("tutorial", "Visualizing plan 3 (constraints) %s", success ? "" : "FAILED");

  // Visualize the plan in RViz
  visual_tools.deleteAllMarkers();
  visual_tools.publishAxisLabeled(start_pose2, "start");
  visual_tools.publishAxisLabeled(target_pose1, "goal");
  visual_tools.publishText(text_pose, "Constrained Goal", rvt::WHITE, rvt::XLARGE);
  visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
  visual_tools.trigger();
  visual_tools.prompt("next step");

  // When done with the path constraint be sure to clear it.
  move_group.clearPathConstraints();

  // Cartesian Paths
  // ^^^^^^^^^^^^^^^
  // You can plan a Cartesian path directly by specifying a list of waypoints
  // for the end-effector to go through. Note that we are starting
  // from the new start state above.  The initial pose (start state) does not
  // need to be added to the waypoint list but adding it can help with visualizations
  std::vector<geometry_msgs::Pose> waypoints;
  waypoints.push_back(start_pose2);

  geometry_msgs::Pose target_pose3 = start_pose2;

  target_pose3.position.z -= 0.2;
  waypoints.push_back(target_pose3);  // down

  target_pose3.position.y -= 0.2;
  waypoints.push_back(target_pose3);  // right

  target_pose3.position.z += 0.2;
  target_pose3.position.y += 0.2;
  target_pose3.position.x -= 0.2;
  waypoints.push_back(target_pose3);  // up and left

  // Cartesian motions are frequently needed to be slower for actions such as approach and retreat
  // grasp motions. Here we demonstrate how to reduce the speed of the robot arm via a scaling factor
  // of the maxiumum speed of each joint. Note this is not the speed of the end effector point.
  move_group.setMaxVelocityScalingFactor(0.1);

  // We want the Cartesian path to be interpolated at a resolution of 1 cm
  // which is why we will specify 0.01 as the max step in Cartesian
  // translation.  We will specify the jump threshold as 0.0, effectively disabling it.
  // Warning - disabling the jump threshold while operating real hardware can cause
  // large unpredictable motions of redundant joints and could be a safety issue
  moveit_msgs::RobotTrajectory trajectory;
  const double jump_threshold = 0.0;
  const double eef_step = 0.01;
  double fraction = move_group.computeCartesianPath(waypoints, eef_step, jump_threshold, trajectory);
  ROS_INFO_NAMED("tutorial", "Visualizing plan 4 (Cartesian path) (%.2f%% acheived)", fraction * 100.0);

  // Visualize the plan in RViz
  visual_tools.deleteAllMarkers();
  visual_tools.publishText(text_pose, "Joint Space Goal", rvt::WHITE, rvt::XLARGE);
  visual_tools.publishPath(waypoints, rvt::LIME_GREEN, rvt::SMALL);
  for (std::size_t i = 0; i < waypoints.size(); ++i)
    visual_tools.publishAxisLabeled(waypoints[i], "pt" + std::to_string(i), rvt::SMALL);
  visual_tools.trigger();
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");

  // Adding/Removing Objects and Attaching/Detaching Objects
  // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  //
  // Define a collision object ROS message.
  moveit_msgs::CollisionObject collision_object;
  collision_object.header.frame_id = move_group.getPlanningFrame();

  // The id of the object is used to identify it.
  collision_object.id = "box1";

  // Define a box to add to the world.
  shape_msgs::SolidPrimitive primitive;
  primitive.type = primitive.BOX;
  primitive.dimensions.resize(3);
  primitive.dimensions[0] = 0.4;
  primitive.dimensions[1] = 0.1;
  primitive.dimensions[2] = 0.4;

  // Define a pose for the box (specified relative to frame_id)
  geometry_msgs::Pose box_pose;
  box_pose.orientation.w = 1.0;
  box_pose.position.x = 0.4;
  box_pose.position.y = -0.2;
  box_pose.position.z = 1.0;

  collision_object.primitives.push_back(primitive);
  collision_object.primitive_poses.push_back(box_pose);
  collision_object.operation = collision_object.ADD;

  std::vector<moveit_msgs::CollisionObject> collision_objects;
  collision_objects.push_back(collision_object);

  // Now, let's add the collision object into the world
  ROS_INFO_NAMED("tutorial", "Add an object into the world");
  planning_scene_interface.addCollisionObjects(collision_objects);

  // Show text in RViz of status
  visual_tools.publishText(text_pose, "Add object", rvt::WHITE, rvt::XLARGE);
  visual_tools.trigger();

  // Wait for MoveGroup to recieve and process the collision object message
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to once the collision object appears in RViz");

  // Now when we plan a trajectory it will avoid the obstacle
  move_group.setStartState(*move_group.getCurrentState());
  geometry_msgs::Pose another_pose;
  another_pose.orientation.w = 1.0;
  another_pose.position.x = 0.4;
  another_pose.position.y = -0.4;
  another_pose.position.z = 0.9;
  move_group.setPoseTarget(another_pose);

  success = (move_group.plan(my_plan) == moveit::planning_interface::MoveItErrorCode::SUCCESS);
  ROS_INFO_NAMED("tutorial", "Visualizing plan 5 (pose goal move around cuboid) %s", success ? "" : "FAILED");

  // Visualize the plan in RViz
  visual_tools.deleteAllMarkers();
  visual_tools.publishText(text_pose, "Obstacle Goal", rvt::WHITE, rvt::XLARGE);
  visual_tools.publishTrajectoryLine(my_plan.trajectory_, joint_model_group);
  visual_tools.trigger();
  visual_tools.prompt("next step");

  // Now, let's attach the collision object to the robot.
  ROS_INFO_NAMED("tutorial", "Attach the object to the robot");
  move_group.attachObject(collision_object.id);

  // Show text in RViz of status
  visual_tools.publishText(text_pose, "Object attached to robot", rvt::WHITE, rvt::XLARGE);
  visual_tools.trigger();

  /* Wait for MoveGroup to recieve and process the attached collision object message */
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to once the collision object attaches to the "
                      "robot");

  // Now, let's detach the collision object from the robot.
  ROS_INFO_NAMED("tutorial", "Detach the object from the robot");
  move_group.detachObject(collision_object.id);

  // Show text in RViz of status
  visual_tools.publishText(text_pose, "Object dettached from robot", rvt::WHITE, rvt::XLARGE);
  visual_tools.trigger();

  /* Wait for MoveGroup to recieve and process the attached collision object message */
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to once the collision object detaches to the "
                      "robot");

  // Now, let's remove the collision object from the world.
  ROS_INFO_NAMED("tutorial", "Remove the object from the world");
  std::vector<std::string> object_ids;
  object_ids.push_back(collision_object.id);
  planning_scene_interface.removeCollisionObjects(object_ids);

  // Show text in RViz of status
  visual_tools.publishText(text_pose, "Object removed", rvt::WHITE, rvt::XLARGE);
  visual_tools.trigger();

  /* Wait for MoveGroup to recieve and process the attached collision object message */
  visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to once the collision object disapears");

  // END_TUTORIAL

  ros::shutdown();
  return 0;
}

参考链接

https://github.com/ros-planning/moveit_tutorials/blob/melodic-devel/doc/move_group_interface/src/move_group_interface_tutorial.cpp

发表评论

您的电子邮箱地址不会被公开。

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据